Sling Shot Engine & Tyre Auto Klene Solutions Chemwatch: **5175-95** Version No: **6.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: 01/11/2019 Print Date: 05/02/2021 S.GHS.AUS.EN ### SECTION 1 Identification of the substance / mixture and of the company / undertaking ### **Product Identifier** | Product name | Sling Shot Engine & Tyre | |-------------------------------|--| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Proper shipping name | CAUSTIC ALKALI LIQUID, N.O.S. (contains potassium hydroxide) | | Chemical formula | Not Applicable | | Other means of identification | Not Available | ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Engine and Tyre Cleaner / Detergent. ### Details of the supplier of the safety data sheet | | • | |-------------------------|--| | Registered company name | Auto Klene Solutions | | Address | 1/83 Merrindale Drive Croydon VIC 3136 Australia | | Telephone | +61 3 8761 1900 | | Fax | +61 3 8761 1955 | | Website | http://www.autoklene.com/msds/ | | Email | Not Available | ### Emergency telephone number | Association / Organisation | Auto Klene Solutions | | |-----------------------------------|---|--| | Emergency telephone numbers | 131 126 (Poisons Information Centre) | | | Other emergency telephone numbers | 0800 764 766 (New Zealand Poisons Information Centre) | | ### **SECTION 2 Hazards identification** ### Classification of the substance or mixture ### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ### ChemWatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 3 | | 1 = Low | | Reactivity | 1 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | S6 | |-------------------------------|--| | Classification ^[1] | Metal Corrosion Category 1, Skin Corrosion/Irritation Category 1B, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ### Label elements Hazard pictogram(s) Signal word Dange ### Hazard statement(s) H290 May be corrosive to metals. Page 2 of 11 Sling Shot Engine & Tyre Issue Date: 01/11/2019 Print Date: 05/02/2021 | H314 | Causes severe skin burns and eye damage. | |------|--| | H317 | May cause an allergic skin reaction. | | H412 | Harmful to aquatic life with long lasting effects. | ### Precautionary statement(s) Prevention | P260 | Do not breathe mist/vapours/spray. | | |------|---|--| | P280 | Wear protective gloves/protective clothing/eye protection/face protection/hearing protection/ | | | P234 | Keep only in original packaging. | | | P273 | Avoid release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | #### Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | |----------------|--|--| | P303+P361+P353 | F ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P310 | Immediately call a POISON CENTER/doctor/ | | | P321 | Specific treatment (see on this label). | | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | | P363 | Wash contaminated clothing before reuse. | | ### Precautionary statement(s) Storage P405 Store locked up. #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures ### **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|--| | 1310-58-3 | <10 | potassium hydroxide | | 61789-40-0 | <30 | cocamidopropylbetaine | | 5989-27-5 | <1 | d-limonene | | Not Available | balance | Ingredients determined not to be hazardous | ### **SECTION 4 First aid measures** ### Description of first aid measures If this product comes in contact with the eyes: ### **Eye Contact** - Immediately hold eyelids apart and flush the eye continuously with running water. - Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper - ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - ▶ Transport to hospital or doctor without delay. - F Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ### If skin or hair contact occurs: ### **Skin Contact** Inhalation - Immediately flush body and clothes with large amounts of water, using safety shower if available. - Quickly remove all contaminated clothing, including footwear. - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. - ► Transport to hospital, or doctor. - If fumes or combustion products are inhaled remove from contaminated area. - Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - ► Transport to hospital, or doctor. - Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. - Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). - As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. - Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) #### Sling Shot Engine & Tyre Issue Date: 01/11/2019 Print Date: 05/02/2021 Ingestion - For advice, contact a Poisons Information Centre or a doctor at once. - Urgent hospital treatment is likely to be needed. - If swallowed do **NOT** induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink - Transport to hospital or doctor without delay. #### Indication of any immediate medical attention and special treatment needed For acute or short-term repeated exposures to highly alkaline materials - ▶ Respiratory stress is uncommon but present occasionally because of soft tissue edema. - ▶ Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure INGESTION: Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Supportive care involves the following - Withhold oral feedings initially. - ▶ If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] ### **SECTION 5 Firefighting measures** ### **Extinguishing media** - Water spray or fog. - ► Foam - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. ### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result ### Advice for firefighters | Alert Fire Brigade and tell them location and nature of hazard. |
---| | Wear full body protective clothing with breathing apparatus. | - Prevent, by any means available, spillage from entering drains or water course. - Fire Fighting Use fire fighting procedures suitable for surrounding area - Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. ### ► Non combustible. - Not combustible. Not considered to be a significant fire risk. - Expansion or decomposition on heating may lead to violent rupture of containers. - Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). - May emit acrid smoke. ### Fire/Explosion Hazard Decomposition may produce toxic fumes of: carbon dioxide (CO2) nitrogen oxides (NOx) sulfur oxides (SOx) metal oxides (S other pyrolysis products typical of burning organic material May emit corrosive fumes ### HAZCHEM 2 ### SECTION 6 Accidental release measures ### Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up Minor Spills - Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. - Check regularly for spills and leaks. - ► Clean up all spills immediately. Chemwatch: 5175-95 Page 4 of 11 Issue Date: 01/11/2019 Version No: 6.1.1.1 Print Date: 05/02/2021 ### Sling Shot Engine & Tyre Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. ▶ Contain and absorb spill with sand, earth, inert material or vermiculite ▶ Wipe up. Place in a suitable, labelled container for waste disposal. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. **Major Spills** ▶ Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 Handling and storage** #### Precautions for safe handling ▶ DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Safe handling Avoid contact with moisture. Avoid contact with incompatible materials. When handling, **DO NOT** eat, drink or smoke. Keep containers securely sealed when not in use. Store in original containers. ► Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Other information ▶ Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. DO NOT store near acids, or oxidising agents ▶ No smoking, naked lights, heat or ignition sources ### Conditions for safe storage, including any incompatibilities - Lined metal can, lined metal pail/ can. - Plastic pail. - Polyliner drum. - Packing as recommended by manufacturer. - ► Check all containers are clearly labelled and free from leaks. For low viscosity materials - ▶ Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): Suitable container Removable head packaging; - ► Cans with friction closures and - ▶ low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. Storage incompatibility - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - Avoid contact with copper, aluminium and their alloys. - Avoid reaction with oxidising agents ### SECTION 8 Exposure controls / personal protection ### Control parameters ### Occupational Exposure Limits (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---------------------|---------------------|---------------|---------------|---------|---------------| | Australia Exposure Standards | potassium hydroxide | Potassium hydroxide | Not Available | Not Available | 2 mg/m3 | Not Available | ### Emergency Limits | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------|---------------------|------------|---------|----------| | potassium hydroxide | Potassium hydroxide | 0.18 mg/m3 | 2 mg/m3 | 54 mg/m3 | | d-limonene | Limonene. d- | 15 ppm | 67 ppm | 170 ppm | | Ingredient | Original IDLH | Revised IDLH | |-----------------------|---------------|---------------| | potassium hydroxide | Not Available | Not Available | | cocamidopropylbetaine | Not Available | Not Available | | d-limonene | Not Available | Not Available | ### Occupational Exposure Banding Page 5 of 11 Sling Shot Engine & Tyre Issue Date: 01/11/2019 Print Date: 05/02/2021 **Occupational Exposure Band Rating Occupational Exposure Band Limit** ≤ 0.1 ppm ≤ 0.1 ppm d-limonene Notes: Ingredient Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. ### Exposure controls cocamidopropylbetaine ### Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. #### Personal protection Ε Е ## Eye and face protection ### Chemical goggles - Full face shield may be required for supplementary but never for primary protection of eyes. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. ### Skin protection #### See Hand protection below - Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber - When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. ### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. Hands/feet protection The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ### **Body protection** ### See Other protection below ### Other protection - Overalls. - PVC Apron. - PVC protective suit may be required if exposure severe. - Evewash unit. - Ensure there is ready access to a safety shower ### Recommended material(s) ### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: ### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection Sling Shot Engine & Tyre | Material | СРІ | |------------------|-----| | NITRILE | A | | BUTYL | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NITRILE+PVC | С | | PVA | С | | PVC | С | | VITON | С | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short
term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. * Where the glove is to be used on a short term, casual or infrequent basis, factors such ### Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | AK-AUS /
Class1 P2 | - | | up to 50 | 1000 | - | AK-AUS /
Class 1 P2 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | AK-2 P2 | | up to 100 | 10000 | - | AK-3 P2 | | 100+ | | | Airline** | - * Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur $\label{eq:conditional} \mbox{dioxide}(SO2), \ G = \mbox{Agricultural chemicals}, \ K = \mbox{Ammonia}(\mbox{NH3}), \ \mbox{Hg} = \mbox{Mercury}, \ \mbox{NO} = \$ Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. Sling Shot Engine & Tyre Issue Date: **01/11/2019**Print Date: **05/02/2021** as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ### **SECTION 9 Physical and chemical properties** ### Information on basic physical and chemical properties | Appearance | Green coloured liquid with a characteristic odour of or | ange; mixes with water. | | |--|---|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | 1.07 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | 12 | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | ~0 | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | ~100 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 Toxicological information** TOXICITY Not Available ### Information on toxicological effects Sling Shot Engine & Tyre | Inhaled | Inhalation of potassium hydroxide dust may be fatal due to spasm, throat pain, redness, hoarseness of voice, and difficulty in swallowing and breathing. There may be inflammation with accumulation of fluid in the lungs. Other symptoms include burning sensation, coughing, wheezing, headache, nausea and vomiting. Inhaling corrosive bases may irritate the respiratory tract. Symptoms include cough, choking, pain and damage to the mucous membrane. | |--------------|---| | Ingestion | The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Ingestion may result in nausea, abdominal irritation, pain and vomiting | | Skin Contact | The material can produce chemical burns following direct contact with the skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage. | | Chronic | Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Prolonged or repeated skin contact may cause degreasing, followed by drying, cracking and skin inflammation. | IRRITATION Not Available Chemwatch: **5175-95** Page **7** of Version No: **6.1.1.1** Sling Shot Engine & Tyre Page 7 of 11 Issue Date: 01/11/2019 Print Date: 05/02/2021 | potassium hydroxide | TOXICITY | IRRITATION | |-----------------------|---|--| | | Oral(Rat) LD50; =214-324 mg/kg ^[2] | Eye (rabbit):1mg/24h rinse-moderate | | | | Skin (human): 50 mg/24h SEVERE | | | | Skin (rabbit): 50 mg/24h SEVERE | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: adverse effect observed (irritating) ^[1] | | cocamidopropylbetaine | Oral(Rat) LD50; >1800 mg/kg ^[1] | Eye: primary irritant * | | | | Skin: adverse effect observed (irritating) ^[1] | | | | Skin: primary irritant * | | | TOXICITY | IRRITATION | | | dermal (mammal) LD50: >0.005 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | d-limonene | Oral(Rat) LD50; >2000 mg/kg ^[1] | Skin (rabbit): 500mg/24h moderate | | | | Skin: no adverse effect observed (not irritating) ^[1] | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | #### POTASSIUM HYDROXIDE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to
the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration. * [Van Waters and Rogers] ** [Canada Colors and Chemicals Ltd.] Toxicokinetics, metabolism and distribution. Absorption of the chemical across dermal and gastrointestinal membranes is possible based on the relatively low molecular weight of the chemical (500 Da) and given that it is a surfactant (EC, 2003). Acute toxicity. Acute oral toxicity studies in rats and mice indicated that the LD50 values of the chemical (at 30-35.61% concentration) ranged from 1800 mg/kg bw (male rats) up to 5000 mg/kg bw, with mortalities noted in most studies (CIR, 2010). Of note is an acute oral toxicity study conducted in Sprague-Dawley rats (5/sex) at a single dose of 1800 mg/kg bw (formulation containing 35.61% of the chemical), where no males but all five females died. Overall, the data suggests that mortality occurs following oral administration of the chemical and that it may be an acute oral toxicant. Therefore, based on these data the chemical may be harmful if swallowed. An acute dermal toxicity study in rats was conducted using 2000 mg/kg bw of a 31% formulation of the chemical (CIR, 2010). Irritation was observed, but there were no clinical signs of systemic toxicity or mortalities. The lack of effects in this study suggests that the chemical is likely to be of low acute dermal toxicity. Irritation. The chemical has a quaternary ammonium functional group, which is a structural alert for corrosion Numerous skin irritation studies, conducted with formulations containing 7.5-30% of the chemical, indicated that the chemical has irritant properties. The studies were, in-general, conducted under occlusive conditions, with exposure times of up to 24 hours (7.5-10%). Based on the information available, the chemical is likely to be a skin irritant. Eye irritation studies with the chemical showed that corrosive and necrotic effects occurred at 30% whereas less severe effects were observed at lower concentrations of 2.3-10% The chemical is classified with the risk phrase R36: Irritating to eyes, however, based on studies conducted on the chemical it may be a severe eye irritant. Sensitisation. The chemical has a quaternary ammonium functional group, which is a structural alert for sensitisation (Conflicting results have been obtained with the chemical in animal studies. Positive results were reported in an LLNA study (an EC3 value was not reported). In addition, positive results were obtained in two guinea pig maximisation studies conducted by a single laboratory, the first at 3% induction and 3% challenge, and the second at 0.15% induction and 0.015% challenge. However, there was no sensitisation in a guinea pig maximisation test when the chemical was tested at 6% induction and 1% challenge. In addition, no sensitisation was observed in another test in guinea pigs at 0.75% induction and 0.02% challenge. No evidence of sensitisation was reported in a HRIPT on a formulation containing the chemical at 0.6% concentration (a 10% dilution of a ~6% formulation) with 110 volunteers. In HRIPT studies on formulations containing the chemical, no evidence of sensitisation was reported at concentrations of 1.87% (88 subjects), 0.93% (93 subjects), 0.3% (100 subjects), 1.5-3.0% (141 subjects), 6.0% (210 subjects), 0.018% (27 subjects). However, positive ### COCAMIDOPROPYLBETAINE results were observed in provocative studies conducted on formulations containing the chemical (at 0.3-1% concentration), conducted in subjects diagnosed with various forms of contact dermatitis, suggesting that the chemical may cause reactions in sensitive individuals In one study authors note that sensitisation effects of the chemical (and related compounds) are most likely due to the impurities, including DMAPA and amidopropyl dimethylamines, however, they do not exclude the possibility of the causing the sensitisation. The potential for skin sensitisation, due to the presence of the above impurities in the chemical, will be limited by their reported low concentration In summary, a definitive conclusion cannot be made on the skin sensitisation potential of the chemical. The available information suggests that skin sensitisation is possible. Although there are some inconsistencies in the results reported for studies conducted on the chemical, the scientific data points towards the positive findings being caused by impurities, in particular DMAPA and amidopropyl dimethylamines, which are present in the chemical at low concentrations. Repeated Dose Toxicity. In a 28-day repeated dose oral toxicity study, rats were administered a 30.6% solution of the chemical at 0, 100, 500 or 1000 mg/kg bw/day. Inflammation of the non-glandular stomach was noted in animals of the high-dose group, although this effect was attributed to the irritant properties of the test material. Mortality was also observed in this study at all treatment levels but there was no dose-response relationship . In another 28-day repeated dose oral toxicity study, rats were administered a solution containing the chemical (concentration not stated) at 0, 250, 500 or 1000 mg/kg bw/day. The NOEL was reported as 500 mg/kg bw/day, which appears to be based on non-systemic irritant effects on the non-glandular stomach. No mortalities were observed In a 90-day repeated dose oral toxicity study, rats were administered a solution containing the chemical (concentration not stated) at 0, 250, 500 or 1000 mg/kg bw/day. There were no mortalities and the noted effects are isolated to the stomach region and appear to be irritant in nature. The NOEL established by the study authors was 250 mg/kg bw/day, based on these effects. Mutagenicity. The chemical was not mutagenic in numerous bacterial reverse mutation assays. Negative results were also obtained for the chemical in a mouse lymphoma test and a micronucleus test in mice. Carcinogenicity. No signs of carcinogenicity were noted in a 20 month dermal study in mice (3 applications/week) for a hair dye formulation containing the chemical at a concentration of 0.09% The formation of nitrosamines is possible. Secondary amides (and the identified impurities) may serve as substrates for N-nitrosation, therefore formulation with N-nitrosating agents should be avoided Possible cross-reactions to several fatty acid amidopropyl dimethylamines were observed in patients that were reported to have allergic contact Possible cross-reactions to several fatty acid amidopropyl dimethylamines were observed in patients that were reported to have allergic contact dermatitis to a baby lotion that contained 0.3% oleamidopropyl dimethylamine. Stearamidopropyl dimethylamine at 2% in hair conditioners was not a contact sensitiser when tested neat or diluted to 30%. However, irritation reactions were observed. A 10-year retrospective study found that out of 46 patients with confirmed allergic eyelid dermatitis, 10.9% had relevant reactions to ### Sling Shot Engine & Tyre Issue Date: 01/11/2019 Print Date: 05/02/2021 oleamidopropyl dimethylamine and 4.3% had relevant reactions to cocamidopropyl dimethylamine. Several cases of allergic contact dermatitis were reported in patients from the Netherlands that had used a particular type of body lotion that contained oleamidopropyl dimethylamine. In 12 patients tested with their personal cosmetics, containing the fatty acid amidopropyl dimethylamine cocamidopropyl betaine (CAPB), 9 had positive reactions to at least one dilution and 5 had irritant reactions. All except 3 patients, who were not tested, had 2 or 3+ reaction to the 3,3-dimethylaminopropylamine (DMAPA, the reactant used in producing fatty acid amidopropyl dimethylamines) at concentrations as low as 0.05%. The presence of DMAPA was investigated via thin-layer chromatography in the personal cosmetics of 4 of the patients that had positive reactions. DMAPA was measured in the products at 50 - 150 ppm suggesting that the sensitising agent in CAPB-induced allergy is DMAPA, The sensitisation potential of a 4% aqueous liquid fabric softener formulation containing 0.5% stearyl/palmitylamidopropyl dimethylamine was investigated using. The test material caused some irritation in most volunteers. After a rest period of 2 weeks, the subjects received challenge patches with the same concentration of test material on both arms. Patch sites were graded 48 and 96 h after patching. Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Amphoteric surfactants are easily absorbed in the gut and partly excreted unchanged in the faeces. It has not been shown to accumulate in the body. Concentrated betaines are expected to irritate the skin and eyes, but dilute solutions only irritate the eyes. No evidence of delayed contact hypersensitivity was found in animal testing. Tests for mutation-causing potential have proved negative. d-Limonene is readily absorbed by inhalation and swallowing. Absorption through the skin is reported to the lower than by inhalation. It is rapidly distributed to different tissues in the body, readily metabolized and eliminated, primary through the urine. Limonene shows low acute toxicity by all three routes in animals. Limonene is a skin
irritant in both experimental animals and humans. Limited data is available on the potential to cause eye and airway irritation. Autooxidised products of d-limonene have the potential to sensitise the skin. Limited data is available on the potential to cause respiratory sensitization in humans. Adverse reactions to fragrances in perfumes and fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, sensitivity to light, immediate contact reactions, and pigmented contact dermatitis. Airborne and connubial contact dermatitis occurs. Contact allergy is a lifelong condition, so symptoms may occur on re-exposure. Allergic contact dermatitis can be severe and widespread, with significant impairment of quality of life and potential consequences for fitness for work. If the perfume contains a sensitizing component, intolerance to perfumes by inhalation may occur. Symptoms may include general unwellness, coughing, phlegm, wheezing, chest tightness, headache, shortness of breath with exertion, acute respiratory illness, hayfever, asthma and other respiratory diseases. Perfumes can induce excess reactivity of the airway without producing allergy or airway obstruction. Breathing through a carbon filter mask had no protective effect. Occupational asthma caused by perfume substances, such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms, even though the exposure is below occupational exposure limits. Fragrance allergens act as haptens, which are small molecules that cause an immune reaction only when attached to a carrier protein. However, not all sensitizing fragrance chemicals are directly reactive, but some require previous activation. A prehapten is a chemical that itself causes little or no sensitization, but it is transformed into a hapten outside the skin by a chemical reaction (oxidation in air or reaction with light) without the requirement of an enzyme. #### D-LIMONENE For prehaptens, it is possible to prevent activation outside the body to a certain extent by different measures, for example, prevention of air exposure during handling and storage of the ingredients and the final product, and by the addition of suitable antioxidants. When antioxidants are used, care should be taken that they will not be activated themselves, and thereby form new sensitisers. Prehaptens: Most terpenes with oxidisable allylic positions can be expected to self-oxidise on air exposure. Depending on the stability of the oxidation products that are formed, the oxidized products will have differing levels of sensitization potential. Tests shows that air exposure of lavender oil increased the potential for sensitization. Prohaptens: Compounds that are bioactivated in the skin and thereby form haptens are referred to prohaptens. The possibility of a prohapten being activated cannot be avoided by outside measures. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Monomethyltin chloride, thioglycolate esters, and tall oil ester reaction product: Monomethyltin trichloride (MMTC, CAS RN: 993-16-8), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA), CAS RN: 57583-34-3), monomethyltin tris[isooctylmercaptoacetate (MMT(IOTG), CAS RN: 54849-38-6) and methyltin reverse ester tallate reaction product (TERP, CAS RNs: 201687-58-3, 201687-57-2, 68442-12-6, 151436-98-5) are considered one category of compounds for mammalian studies via the oral route. The justification for this category is based on structural similarities and the demonstrated rapid conversion of all of the esters to the MMTC when placed in simulated mammalian gastric contents [0.07M HCI] under physiological conditions. For the MMT(EHTG) >90% conversion to MMTC occurred within 0.5 hours. For TERP, 68% of the monomethyltin portion of the compound was converted to MMTC within 1 hour. Thus, MMTC is the appropriate surrogate for mammalian toxicology studies via the oral route. TERP is a reaction product of MMTC and dimethyltin dichloride (DMTC), Na2S, and tall oil fatty acid [a mixture of carboxylic acids, predominantly C-18]. The reaction product is a mixture of carboxylic esters and includes short oligomers of mono/dimethyltins bridged by sulfide groups. Although the tall oil component of TERP is not structurally similar to EHTG, TERP's conversion to MMTC justifies its inclusion. Tumorigenic by RTECS criteria # POTASSIUM HYDROXIDE & COCAMIDOPROPYLBETAINE The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. # COCAMIDOPROPYLBETAINE Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. | Acute Toxicity | × | Carcinogenicity | X | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | X | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | The following information refers to contact allergens as a group and may not be specific to this product. Legend: 💢 – Data either not available or does not fill the criteria for classification — Data available to make classification Version No: **6.1.1.1** ### Sling Shot Engine & Tyre Issue Date: **01/11/2019**Print Date: **05/02/2021** #### Toxicity | | Endpoint | Test Duration (hr) | Species | | Value | Source | |--------------------------|---|--------------------|-------------------------------|-----------|------------------|------------------| | Sling Shot Engine & Tyre | Not
Available | Not Available | Not Available | | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | | Value | Source | | potassium hydroxide | LC50 | 96 | Fish | | 80mg/L | 2 | | | NOEC | 24 | Fish | | 28mg/L | 2 | | | Endpoint | Test Duration (hr) | Species | | Value | Source | | | LC50 | 96 | Fish | | 1.9mg/L | 2 | | cocamidopropylbetaine | EC50 | 48 | Crustacea | | 6.4mg/L | 2 | | | EC50 | 96 | Algae or other aquatic plants | | 0.55mg/L | 2 | | | NOEC | 672 | Fish | | 0.16mg/L | 2 | | | Endpoint | Test Duration (hr) | Species | Val | ue | Source | | | LC50 | 96 | Fish | 0.4 | 6mg/L | 2 | | d-limonene | EC50 | 48 | Crustacea | 0.307mg/L | | 2 | | | EC50 | 72 | Algae or other aquatic plants | 0.2 | 14mg/L | 2 | | | NOEC | 0 | Algae or other aquatic plants | <0. | 05-1.5mg/L | 4 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | | Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. Prevent, by any means available, spillage from entering drains or water courses. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-------------------------|------------------| | d-limonene | HIGH | HIGH | ### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|------------------------| | d-limonene | HIGH (LogKOW = 4.8275) | ### Mobility in soil | , | | |------------|------------------| | Ingredient | Mobility | | d-limonene | LOW (KOC = 1324) | ### **SECTION 13 Disposal considerations** ### Waste treatment methods Product / Packaging disposal - ▶ Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. ### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ▶ Treat and neutralise at an approved treatment plant. - Treatment should involve: Neutralisation with suitable dilute acid followed by:
burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 Transport information** ### Labels Required Marine Pollutant NO Page 10 of 11 Issue Date: 01/11/2019 Print Date: 05/02/2021 ### Sling Shot Engine & Tyre HAZCHEM 2R ### Land transport (ADG) | UN number | 1719 | | | |------------------------------|--|--|--| | UN proper shipping name | CAUSTIC ALKALI LIQUID, N.O.S. (contains potassium hydroxide) | | | | Transport hazard class(es) | Class 8 Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions 223 274 Limited quantity 5 L | | | ### Air transport (ICAO-IATA / DGR) | transport (10/10 1/11/17 DOI | <u>'</u> | | | | |------------------------------|--|----------------|---------|--| | UN number | 1719 | | | | | UN proper shipping name | Caustic alkali liquid, n.o.s. * (contains potassium hydroxide) | | | | | | ICAO/IATA Class | 8 | | | | | ICAO / IATA Subrisk | | | | | Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 8L | | | | Packing group | III | | | | | Environmental hazard | Not Applicable | | | | | | Special provisions | | A3 A803 | | | | _ - ` - ` - | | | | | Special precautions for user | Cargo Only Packing Instructions | | 856 | | | | Cargo Only Maximum Qty / Pack | | 60 L | | | | Passenger and Cargo Packing Instructions | | 852 | | | | Passenger and Cargo Maximum Qty / Pack | | 5 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y841 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 1 L | | ### Sea transport (IMDG-Code / GGVSee) | UN number | 1719 | | | |------------------------------|--|--|--| | UN proper shipping name | CAUSTIC ALKALI LIQUID, N.O.S. (contains potassium hydroxide) | | | | Transport hazard class(es) | IMDG Class 8 IMDG Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-A , S-B Special provisions 223 274 Limited Quantities 5 L | | | ### Transport in bulk according to Annex II of MARPOL and the IBC code ### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-----------------------|---------------| | potassium hydroxide | Not Available | | cocamidopropylbetaine | Not Available | | d-limonene | Not Available | ### Transport in bulk in accordance with the ICG Code | • | | |-----------------------|---------------| | Product name | Ship Type | | potassium hydroxide | Not Available | | cocamidopropylbetaine | Not Available | | d-limonene | Not Available | ### **SECTION 15 Regulatory information** Version No: **6.1.1.1** ### Sling Shot Engine & Tyre Issue Date: 01/11/2019 Print Date: 05/02/2021 ### potassium hydroxide is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) #### cocamidopropylbetaine is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) #### d-limonene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs ### **National Inventory Status** | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (potassium hydroxide; cocamidopropylbetaine; d-limonene) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - ARIPS | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 Other information** | Revision Date | 01/11/2019 | |---------------|------------| | Initial Date | 22/05/2015 | ### **SDS Version Summary** | Version | Issue Date | Sections Updated | | | |---------|------------|--|--|--| | 3.1.1.1 | 31/05/2017 | Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Appearance, Chronic Health, Classification, Disposal, Environmental, Fire Fighter (fire/explosion hazard), Handling Procedure, Ingredients, Instability Condition, Personal Protection (Respirator), Personal Protection (hands/feet), Physical Properties, Storage (storage incompatibility), Storage (suitable container), Transport, Use, Name | | | | 6.1.1.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | | ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.